Closing Tue:
13.3(part 2), 13.4

Closing Thu: $\quad 14.1,14.3$ (part 1)
Midterm 1 will be returned Tuesday.

13.4 Position, Velocity, Acceleration

IF $\boldsymbol{t}=\boldsymbol{t i m e}$, then
$\overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)\rangle=$ position,
And since

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\overrightarrow{\boldsymbol{r}}(t+h)-\overrightarrow{\boldsymbol{r}}(t)}{h}=\frac{\text { change in position }}{\text { change in time }}
$$

we have
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\overrightarrow{\boldsymbol{v}}(t)=<x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)>=$ velocity
$\left|\overrightarrow{\boldsymbol{r}}^{\prime}(\boldsymbol{t})\right|=|\overrightarrow{\boldsymbol{v}}(t)|=\frac{\text { change in dist }}{\text { change in time }}=$ speed.

And since

$$
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\lim _{h \rightarrow 0} \frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t+h)-\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{h}=\frac{\text { change in velocity }}{\text { change in time }}
$$

so we have
$\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\overrightarrow{\boldsymbol{a}}(t)=$ acceleration

Entry Task:
Let t be time in seconds and assume the position of an object (in feet) is given by

$$
\overrightarrow{\boldsymbol{r}}(t)=\left\langle t, 2 e^{-t}\right\rangle
$$

Find the following:

1. General formulas for velocity, speed and acceleration at time t seconds.
2. Find and illustrate the velocity, speed and acceleration at time $t=0$ seconds.
3. What happens to velocity, speed and acceleration as t gets larger?

HUGE application: How to study motion.

Newton's $2^{\text {nd }}$ Law of Motion states
Force $=$ mass \cdot acceleration

$$
\overrightarrow{\boldsymbol{F}}=m \cdot \overrightarrow{\boldsymbol{a}}
$$

If $\overrightarrow{\boldsymbol{F}}=\langle 0,0,0\rangle$, then all the forces on the object 'balance out' and the object has no acceleration.
(The velocity of the object will be constant)

If $\overrightarrow{\boldsymbol{F}} \neq\langle 0,0,0\rangle$, then acceleration will occur, and we can integrate (or solve differential equations) to find the velocity and position.

Example:

A ball with mass $m=0.8 \mathrm{~kg}$ is thrown northward into the air with initial speed of $30 \mathrm{~m} / \mathrm{sec}$ at an angle of 30 degrees with the ground. A west wind applies a steady force of 4 N on the ball (west to east).
If you are standing on level ground, where does the ball land?

1. Forces?
2. Get acceleration.
3. Integrate to get $\overrightarrow{\boldsymbol{v}}(t)$
(initial conditions?)
4. Integrate again to get $\overrightarrow{\boldsymbol{r}}(t)$
(initial conditions?)

Measuring and describing acceleration

Recall: $\operatorname{comp}_{\overrightarrow{\boldsymbol{b}}}(\overrightarrow{\boldsymbol{a}})=\frac{\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{b}}}{\overrightarrow{\boldsymbol{b}}}=$ projection length.
We define:
$a_{T}=\operatorname{comp}_{\overrightarrow{\boldsymbol{T}}}(\overrightarrow{\boldsymbol{a}})=\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{T}}=$ tangential comp.
$a_{N}=\operatorname{comp}_{\overrightarrow{\boldsymbol{N}}}(\overrightarrow{\boldsymbol{a}})=\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{N}}=$ normal component
Note that: $\overrightarrow{\boldsymbol{a}}=a_{T} \overrightarrow{\boldsymbol{T}}+a_{N} \overrightarrow{\boldsymbol{N}}$

Some helpful interpretations: Let's rewrite all our definitions from 13.3 in terms of velocity and acceleration and see what happens.

For ease of writing, let $v(t)=|\overrightarrow{\boldsymbol{v}}(t)|=$ speed

1. Since $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{v}}(t)}{v(t)}$, we get $\overrightarrow{\boldsymbol{v}}=v \overrightarrow{\boldsymbol{T}}$.
2. Since $\kappa(t)=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|}{v(t)}$, we get $\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\kappa v$.
3. Since $\overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\mid}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}}{\kappa v}$, we get $\overrightarrow{\boldsymbol{T}}^{\prime}=\kappa v \overrightarrow{\boldsymbol{N}}$.

Differentiating the first fact above gives

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+v \overrightarrow{\boldsymbol{T}}^{\prime}, \text { so } \\
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+k v^{2} \overrightarrow{\boldsymbol{N}}=a_{T} \overrightarrow{\boldsymbol{T}}+a_{N} \overrightarrow{\boldsymbol{N}}
\end{aligned}
$$

Conclusion

$$
\begin{aligned}
& a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=\text { derivative of speed } \\
& a_{N}=k v^{2}=\text { curvature } \cdot(\text { speed })^{2}
\end{aligned}
$$

For computational purposes, we use

$$
a_{T}=\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \text { and } a_{T}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

(why do these follow from everything else on this page?)

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=<\cos (t), \sin (t), t>
$$

Find the tangential and normal components of acceleration.

